

Thorson, J.T., Ianelli, J.N., Larsen, E., Ries, L., Scheuerell, M.D., Szuwalski, C. & Zipkin, E. (In press) Joint dynamic species distribution models: a tool for community ordination and spatiotemporal monitoring. *Global Ecology and Biogeography*.

Thorson, J.T., Scheuerell, M., Shelton, A.O., See, K., Skaug, H.J., Kristensen, K., In press. Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution

Spatial factor analysis

- Estimates K "latent" maps for co-occurring species
- Separates process and measurement error
- Derived estimates of cooccurrence

Multispecies catches

$$c_p(s) \sim \text{Poisson}(\exp(\lambda_p(s)))$$

Expected densities

$$\lambda_p(s) = \alpha_p + \sum_{k=1}^K L_{p,k} \omega_k(s)$$

Where:

- $\omega_{i,k}$ is the k-th factor
- $L_{p,k}$ is the loadings for factor k on species p
- α_p is an intercept for species p
- $\lambda_{i,p}$ is predicted log-density for species p at location i

Spatial Gompertz model

Autoregressive model

$$\log(\mathbf{d}_{t+1}) = \rho \log(\mathbf{d}_t) + \mathbf{\omega} + \mathbf{\varepsilon}_t$$
$$c_i \sim \text{Poisson}\left(d_{t(i)}(s_i)\right)$$

Where

- ρ is the strength of density dependence
- $\omega \sim GMRF(\alpha, \Sigma_{\omega})$ is spatial variation in carrying capacity
- $\varepsilon_t \sim GMRF(\mathbf{0}, \Sigma_{\varepsilon})$ is spatiotemporal variation

Model structure

Factors follow Gompertz dynamics

$$\log(\mathbf{d}_{t+1,k}) = \rho\log(\mathbf{d}_{t,k}) + \mathbf{\omega}_k + \mathbf{\varepsilon}_{t,k}$$

Density is log-linear combination of factors

$$\lambda_{t,p}(s) = \alpha_p + \sum_{k=1}^{n_k} L_{p,k} \log(d_{t,k}(s))$$

Data follow a standard count process

$$c_{i,p} \sim \text{Poisson}\left(\lambda_{t(i),p}(s_i)\right)$$

Conclusions

- Can reconstruct community dynamics
- Phylogenetic signal in species correlations
- Can identify
 "spatial scale" of
 community
 dynamics

Thorson, J.T., Kotwicki, S, Ianelli, J.N. (In prep) The relative influence of temperature on fish distribution shifts: An important metric for forecasting future climate impacts.

VAST model

- <u>Vector-Autoregressive Spatio-Temporal</u> model
- Model density for every time, place, and size-class
 - Correlations over space for each size-bin
 - Correlations among size-bins for every year
- Includes temperature effects
 - Quadratic surface temperature
 - Quadratic bottom temperature
 - Regional temperature effect
 - Cold pool area interaction with location north-south or east-west

Derived quantities

$$d(s,t) = \exp(\lambda(s,t))$$

1. Total abundance

$$B(t) = \sum_{s=1}^{n_s} d(s, t) \times a(s)$$

2. Center of gravity

$$\bar{x}_t = \frac{1}{\sum_{s=1}^{n_s} (d(s, t) \times a(s))} \sum_{s=1}^{n_s} x(s) (d(s, t) \times a(s))$$

3. Average density

$$\bar{d}(t) = \frac{1}{\sum_{s=1}^{n_s} (d(s,t) \times a(s))} \sum_{s=1}^{n_s} d(s,t) (d(s,t) \times a(s))$$

Three counter-factuals

- 1. Just temperature effects
 - Turn off spatio-temporal variation
 - Turn of variation in size-structure over time
- 2. Just "recruitment-variation" effects
 - Turn off temperature effects
 - Turn off spatio-temporal variation
- 3. Just residual variation
 - Turn off temperature effects
 - Turn off variation in size-structure over time

Distribution for all counter-factuals

 Most observed variation is in the "unexplained" counter-factual

Distribution for all counter-factuals

- Temperature generates some north-south variation
- Recruitment generates some east-west variation

	Northings COG (kilometres)	Eastings COG (kilometres)
Abundance weighted average		
estimator	44.6	70.4
Full model	51.5	74.0
Only temperature	21.5	12.8
Only recruitment-variation	6.8	22.7
Only unexplained	58.9	84.0

Distribution over time

- Trend north and west over time
- Neither temperature of size-structure captures the trend

Discussion

Future directions

- 1. Spatial ecosystem-based management
 - Estimate associations between fish and habitat

Discussion

Future directions

- 2. Spatial predator-prey overlap
 - Estimate associations between fish and habitat

Acknowledgements

SDFA: Jim Ianelli, Mark Scheuerell, Elise Zipkin,

Elise Larsen, Leslie Reis

VAST: Stan Kotwicki, Jim Ianelli

Discussions: Kirstin Holsman

Model development: Lewis Barnett

TMB: Kasper Kristensen, Hans Skaug